Let’s say you read a headline announcing an advance in the way we
generate random
numbers. You might think to yourself, "First of all, why do we need random
numbers in the first place?" Random numbers are important for many science
experiments, and the field of statistics is ultimately based on randomness. Scientists
and mathematicians need random numbers as a part of their toolbox in order to
do good work. Next, you might ask, how do we get random numbers then? Old
school methods involve the flipping of a coin, or the rolling of dice. These
methods take a lot of time if you’re trying to produce a huge list of random
numbers. Nowadays we use computers. The problem is, even computers produce
results that are predictable. Hard to predict, but predictable nonetheless.
What are the chances? You mean to tell me that we can’t actually
produce randomness? The paradox is that computers generate random numbers based
on an algorithm. Everything they do is based on an algorithm, a set of
instructions. Yet, nowhere in a set of instructions can it say, “Generate a
random number.” Algorithms cannot think for themselves; technically, we the
human programmers do the thinking. (And yet even we can’t generate random numbers.) I’m starting to confuse even
myself here, so I should cut to the chase.
In a world where information avails itself to us in an
ever-accelerating fashion, we might be led to think that one day we will be
sure about everything – a theory of
everything, an omniscience of all future events. But if we remember that
science – the thing we use to “be certain” about things – needs randomness to
work, and yet we don’t really know how to get absolute randomness, then we can
temper our visions of a fully programmed world where all existence is
automated. Uncertainty will always be with us.
Notes:
May 2016, BBC News
No comments:
Post a Comment