Above we see a microscopic view of the Paenibacillus bacteria, found in coffee machines and where coffee is prepared. It's been used as a probiotic for both chickens and bees, and might have something to do with the idea that coffee is good for your health.
But that's just coffee. Onto the real story -- nobody lives alone, and that includes even those of us who don't live with other people. We're talking about the vast array of microbes that share our domestic biome with us. They outnumber us by the billions (uncountable really) and could have a strong influence on our health, maybe even our behavior (looking at you Toxoplasmosis), all by way of the mediating effects between our microbiome and our immune system. And they smell. Not all of them, but where there's life, there's smells. It's our own domestic ecology of smells.
Each one of us affects the microbiome we live with, depending on who we are, what we eat, what we do for work and in our spare time, how we clean, how often and how thoroughly we clean, ad infinitum. The home is a dynamic place, and very different from a scientific laboratory, in almost every way, and so we don't have a good idea of what's happening in our homes, not on a biological basis, and not even on a chemical basis.
And then came the HOME house, the HOME Chem model house, a chemical-lab-house, put together by 60 scientists from 13 universities in Austin, Texas circa 2020. They do regular-house things and measure the chemical profile of the air inside the home over time while they cook, clean, eat, sleep. It might sound mundane, but it's the first time we're getting real world indoor air quality data from the domestic frontier.
Most air quality data comes from outside air. We haven't been thinking about the indoor air for very long, and much less resources and scientific inquiry have been devoted to it. The HOME project gives us the first glimpse of what's really happening to our indoor environment while we live there.
With roommates, it's all about chemistry, molecularly speaking
Jun 2022, phys.org
An experimental test home was erected in Austin, Texas during the summer of 2018. The house was designed for ordinary use and included bathrooms, a kitchen, gathering and work areas. Overnight stays were prohibited, but 45 study participants, plus visitors, spent time in the house, occupying it for approximately six hours per day for 26 days, during which they performed scripted activities, such as cooking, cleaning and socializing.The house was deep cleaned with a bleach solution. Nonetheless, researchers said traces of molecules associated with humans were still present. After almost of month of human occupation, the house was alive with molecular and microbial abundance and diversity, albeit unevenly distributed.Not surprisingly, the kitchen and toilet were hotspots of molecular and microbial diversity, though numbers fluctuated with surface cleaning and sanitation. "It appears that, even when a subset of chemistry is removed because of the cleaning, it is only temporary and/or partial, as the sum total of cleaning and human activities overall results in an increase in accumulation of richer chemistry," the authors wrote.
via University of California San Diego, Colorado State (Delphine Farmer), and University of Colorado: Alexander A. Aksenov et al, The molecular impact of life in an indoor environment, Science Advances (2022). DOI: 10.1126/sciadv.abn8016
Image credit: Paenibacillus bacteria found where coffee was prepared - Prof. Eshel Ben-Jacob Wikimedia - 2022
Here's more links on HOME:
And here's some information on how bad we are at perceiving air quality indoors:
- Teachers did not accurately perceive mechanical ventilation sufficiency
- Air quality and temperature are conflated
- Dramatic difference in IAQ perception (but not quality) in summer vs winter
- Occupants misperceive temperature as a proxy for indoor air quality; they think cooler air is better, and confuse warm air with "stuffy, stale" air
- Teachers in classrooms with worse ventilation were more satisfied with classroom temperature
- Occupants don't understand how the systems work, and think incoming cold air in winter is a defect, for example (when in fact it is the system adding fresh air to the mix); they then say the system isn't working, and therefore they must have bad IAQ; they also think the only time the system brings fresh air is when the AC is on, which is the complete opposite of what's happening
Source: Pistochini T, Mande C, Modera M, et al. Improving Ventilation and Indoor Environmental Quality in California K-12 Schools (CEC-500- 2020-049). Sacramento, CA: California Energy Commission; 2020. https://www.energy.ca.gov/publications/2020/improving-ventilation-and-indoor-environmental-quality-california-schools