Thursday, December 14, 2023

Insects for Olfactory Insight


Insects are such an important part of olfactory science because they smell with their antennae, which are outside their bodies, making it easier to study. Also, their brains are pretty simple, which makes it easier to study how the most complicated and least understood sense works.

Another reason insects are so important to olfactory science isn't really about olfaction, it's about malaria, and Zika, and West Nile, you name it. Mosquitoes are one of the main drivers of infectious disease around the world. And if we could only figure out how they use their sense of smell to find us, we could stop them from finding us and infecting us.

The first article shows you just how important this effort is --


Researchers build mosquito testing arena to discover how they find us over long distances
May 2023, phys.org

"This is the largest system to assess olfactory preference for any mosquito in the world."

Using an ice-rink-sized (1,000 m3) outdoor testing arena in Choma District Zambia, researchers found that human body odor is critical for mosquito host-seeking behavior over long distances. They had six people sleep in single-person tents surrounding the arena over six consecutive nights, and they used repurposed air conditioner ducting to pipe air from each tent—containing the aromas of its sleeping occupant.

The testing arena contained a ring of evenly spaced landing pads that were heated to human skin temperature (35ºC). Each night, the researchers released 200 hungry mosquitoes into the testing arena and monitored their activity using infrared motion cameras.
  • mosquitoes were not attracted to heated landing pads unless they were baited with CO2 
  • human body odor was a more attractive bait than CO2 alone
  • some people were more attractive to mosquitoes than others
  • one volunteer with a strikingly different odor composition from the others consistently attracted very few mosquitoes
  • people who were more attractive to mosquitoes consistently emitted more carboxylic acids probably produced by skin microbes
  • the person who was least attractive to mosquitoes emitted less carboxylic acids but triple the amount of eucalyptol, which may be related to the person's diet
  • the team identified 40 chemicals that were emitted by all of the humans, though at different rates.
  • "It's probably a ratio-specific blend that they're following" 

via Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, and Macha Research Trust: Conor J. McMeniman, Human scent guides mosquito thermotaxis and host selection under naturalistic conditions, Current Biology (2023). DOI: 10.1016/j.cub.2023.04.050.


Washing with different soaps could make you more or less attractive to mosquitoes
May 2023, phys.org

"It's remarkable that the same individual that is extremely attractive to mosquitoes when they are unwashed can be turned even more attractive to mosquitoes with one soap, and then become repellent or repulsive to mosquitoes with another soap," says senior author and neuroethologist Clément Vinauger.

"What really matters to the mosquito is not the most abundant chemical, but rather the specific associations and combinations of chemicals, not only from the soap, but also from our personal body odors," says Vinauger.

via Virginia Tech: Clement Vinauger, Soap application alters mosquito-host interactions, iScience (2023). DOI: 10.1016/j.isci.2023.106667.


Perfume component helps lure male moth pests
Apr 2023, phys.org

Smells are so complicated: "Nonenal is a universal attractant that, by itself, doesn't have much of an effect, but when a certain percentage is added to the multi-chemical attractant mixture discovered nearly 40 years ago, it has a highly stimulatory effect."

(The researchers started examining ways to attract and then trap armyworm moths as part of a "mating disruption" strategy.)

via North Carolina State University: Ahmed M. Saveer et al, Nonanal, a new fall armyworm sex pheromone component, significantly increases the efficacy of pheromone lures, Pest Management Science (2023). DOI: 10.1002/ps.7460


Good smells, bad smells: It's all in the insect brain
Aug 2023, phys.org

I don't think I've ever heard the sense of smell referred to in this way: "While it is more of an aesthetic sense in humans, for insects, including locusts, the olfactory system is used to find food and mates and to sense predators."

It certainly is different, because in insects, their "palp" mouth triggers automatically to eat food just from the presence of some specific odors. I think we would usually see this difference in the context of the pheromone-receptor parts of our olfactory system, which don't actually work anymore in humans. Lots of animals, insects too, and beyond of course, have their behavior very strongly (could you call it irresistibly?) controlled by smells. 

Back to the study:

Interestingly, some of the locusts showed no response to any of the odors presented. They found that locusts only associated appealing scents with a food reward. Delaying the reward, they found that locusts could be trained to delay their behavioral response.

"All information received by our sensory apparatus, and their relevance to us, has to be represented by electrical activity in the brain. It appears that sorting information in between positive and negative happens as soon as the sensory signals enter the brain."

via McKelvey School of Engineering at Washington University in St. Louis: Rishabh Chandak et al, Neural manifolds for odor-driven innate and acquired appetitive preferences, Nature Communications (2023). DOI: 10.1038/s41467-023-40443-2


A non-invasive way to turn a cockroach into a cyborg
Sep 2023, phys.org

First, we made remote control roaches by smashing an electric circuit through their head. But now, it's as simple as slipping over their antennae a sleeve made of gold and plastic, and fixed in place by a blast of ultraviolet light, like plastic shrink-wrap.

Note to self -- insects don't get "injured," they get "damaged" -- "damaging cockroaches during attempts to control them results in a very short life expectancy, which then results in very little payoff for a lot of work".

via Nanyang Technological University in Singapore: Qifeng Lin et al, Resilient conductive membrane synthesized by in-situ polymerisation for wearable non-invasive electronics on moving appendages of cyborg insect, npj Flexible Electronics (2023). DOI: 10.1038/s41528-023-00274-z

Post Script: For a cockroach, and for all insects, their antenna is their nose, and so this is how we'll do it for humans too. (Except laser pulses through the retina are a likely candidate as well. Why not both?)

No comments:

Post a Comment